|
/** |
|
* Authored 2012 by Christer Swahn |
|
*/ |
|
|
|
import nu.chervil.util.math.SpatialTuple; |
|
import nu.chervil.util.math.SpatialVector; |
|
|
|
import org.apache.log4j.Logger; |
|
|
|
/** |
|
* Computes the optimal trajectory from A to B in a solar system using classical |
|
* mechanics. Finds the trajectory legs (each expressed as a thrust vector and a |
|
* length of time) that as soon as possible will move the ship to the same |
|
* position and velocity as the destination. |
|
* <P> |
|
* The objective is to plan the space trajectory needed to rendezvous with a |
|
* given destination within the solar system. It is needed to implement the |
|
* game's autopilot which is used by both computer-controlled ships and players. |
|
* The trajectory must be computed in advance since simply going in the |
|
* direction of the destination would result in arriving with a speed very |
|
* different from that of the destination object. We need to know beforehand |
|
* when to 'gas' and when to 'break', and in what precise directions to do this. |
|
* <P> |
|
* The planned trajectory should be fairly efficient (primarily regarding travel |
|
* time, but also regarding fuel consumption) and preferably not cheat by using |
|
* different physics than the player experiences with the manual controls. It |
|
* must also be fairly fast to compute - it's an MMO game and there can be many |
|
* thousands of traveling ships. |
|
* <P> |
|
* The formal problem is: The traveling spaceship, at current position P in |
|
* space and with current velocity V, is to travel and rendezvous with a |
|
* destination object (a planet, another ship etc) which is at current position |
|
* Q and with current velocity W. Since it's a rendezvous (e.g. docking or |
|
* landing) the traveling spaceship must have the same velocity W as the |
|
* destination upon arrival. |
|
* <P> |
|
* <I>Input:</I> An instance of TrajectoryParameters that contains:<BR> |
|
* deltaPosition<BR> |
|
* deltaVelocity<BR> |
|
* maxForce (ship's max thrust)<BR> |
|
* mass (ship's mass) |
|
* <P> |
|
* <I>Output:</I> An array of TrajectoryLeg instances, each containing:<BR> |
|
* thrust vector (length of which is the thrust force; less than or equal to maxForce)<BR> |
|
* time (length of time to apply the thrust) |
|
* <P> |
|
* The problem solved here makes no mention of changes to the destination's |
|
* velocity over time. It's been simplified to disregard the destination's own |
|
* acceleration. In theory the change in velocity direction over time is |
|
* possible to compute for orbiting celestial bodies, although difficult within |
|
* the context of this problem. But other spaceships are impossible to predict |
|
* because someone else is controlling them! <I>Therefore the trajectory must be |
|
* recomputed regularly during the journey - and we might as well disregard the |
|
* complication of the destination's continuously changing acceleration in this |
|
* solution.</I> |
|
* |
|
* @author Christer Swahn |
|
*/ |
|
public class TrajectoryCalculator { |
|
public static final Logger LOG = Logger.getLogger(TrajectoryCalculator.class); |
|
public static final StatCompiler STAT = StatCompiler.getStatCompiler(TrajectoryCalculator.class); |
|
|
|
/** the time tolerance */ |
|
static final double TIME_TOLERANCE = 1e-6; |
|
/** defines what is regarded as equivalent position and speed */ |
|
static final double GEOMETRIC_TOLERANCE = 1e-6; |
|
/** the force tolerance during calculation */ |
|
static final double FORCE_TOLERANCE = 1e-6; |
|
/** the force difference tolerance of the result */ |
|
static final double RESULT_FORCE_TOLERANCE = 1e-2; |
|
|
|
private static final int ITER_LIMIT = 30; |
|
|
|
|
|
/** |
|
* Computes the optimal trajectory to rendezvous with a destination. If an |
|
* object traverses this trajectory it will have the same velocity as the |
|
* destination at the point of arrival. |
|
* <P> |
|
* The vessel travels using its thrust engine, which accelerates the |
|
* vessel in whatever direction it is pointing. The planned trajectory |
|
* is expressed as a sequence of thrust applications, each describing |
|
* a trajectory leg: |
|
* <UL> |
|
* <LI>From time 0 to t1 apply thrust X |
|
* <LI>From time t1 to t2 apply thrust Y |
|
* <LI> ... |
|
* </UL> |
|
* <P> |
|
* The number of iterations needed by this implementation should be expected |
|
* to average below 10. |
|
* <P> |
|
* @param tp the trajectory parameters describing the travel to be achieved |
|
* @return an array with one or more trajectory legs (does not return null) |
|
* @throws IllegalArgumentException if the trajectory parameters describe a |
|
* destination that has already been reached |
|
*/ |
|
public static TrajectoryLeg[] computeRendezvousTrajectory(TrajectoryParameters tp) |
|
throws IllegalArgumentException { |
|
TrajectoryLeg[] trajectory = new TrajectoryLeg[2]; |
|
trajectory[0] = new TrajectoryLeg(); |
|
trajectory[1] = new TrajectoryLeg(); |
|
|
|
final double dV_magnitude = tp.deltaVelocity.length(); |
|
final double distance = tp.deltaPosition.length(); |
|
|
|
// check special case 1, dV = 0: |
|
if (dV_magnitude < GEOMETRIC_TOLERANCE) { |
|
if (distance < GEOMETRIC_TOLERANCE) |
|
throw new IllegalArgumentException("Already at destination"); |
|
|
|
double t_tot = Math.sqrt(2*tp.mass*distance / tp.maxForce); |
|
trajectory[0].thrust.set(tp.deltaPosition).scale(tp.maxForce/distance); |
|
trajectory[1].thrust.set(trajectory[0].thrust).negate(); |
|
trajectory[0].time = trajectory[1].time = t_tot / 2; |
|
return trajectory; |
|
} |
|
|
|
SpatialVector F_v = new SpatialVector(); |
|
SpatialVector D_ttot = new SpatialVector(); |
|
SpatialVector V_d_ttot = new SpatialVector(); |
|
SpatialVector R_d = new SpatialVector(); |
|
SpatialVector F_d = new SpatialVector(); |
|
SpatialVector F_d2 = new SpatialVector(); |
|
|
|
// pick f_v in (0, tp.maxForce) via f_v_ratio in (0, 1): |
|
double best_f_v_ratio = -1; |
|
double min_f_v_ratio = 0; |
|
double max_f_v_ratio = 1; |
|
double simple_f_v_ratio = calcSimpleRatio(tp); |
|
double f_v_ratio = simple_f_v_ratio; // start value |
|
min_f_v_ratio = simple_f_v_ratio * .99; // (account for rounding error) |
|
int nofIters = 0; |
|
do { |
|
nofIters++; |
|
double f_v = f_v_ratio * tp.maxForce; |
|
|
|
double t_tot = tp.mass / f_v * dV_magnitude; |
|
|
|
F_v.set(tp.deltaVelocity).scale(tp.mass / t_tot); |
|
D_ttot.set(tp.deltaVelocity).scale(t_tot/2).add(tp.deltaPosition); |
|
|
|
double dist_ttot = D_ttot.length(); |
|
|
|
// check special case 2, dP_ttot = 0: |
|
if (dist_ttot < GEOMETRIC_TOLERANCE) { |
|
// done! F1 = F2 = Fv (only one leg) (such exact alignment of dV and dP is rare) |
|
// FUTURE: should we attempt to find more optimal trajectory in case f_v < maxForce? |
|
if (f_v_ratio < 0.5) |
|
LOG.warn("Non-optimal trajectory for special case: dV and dP aligned: f_v_ratio=" + f_v_ratio); |
|
trajectory = new TrajectoryLeg[1]; |
|
trajectory[0] = new TrajectoryLeg(F_v, t_tot); |
|
return trajectory; |
|
} |
|
|
|
V_d_ttot.set(D_ttot).scale(2/t_tot); |
|
R_d.set(D_ttot).scale(1/dist_ttot); // normalized D_ttot |
|
|
|
double alpha = Math.PI - F_v.angle(R_d); // angle between F_v and F_p1 |
|
assert (alpha >= 0 && alpha <= Math.PI) : alpha + " not in (0, PI), F_v.dot(R_p1)=" + F_v.dot(R_d); |
|
|
|
double f_d; |
|
if (Math.PI - alpha < 0.00001) { |
|
// special case 3a, F_v and F_p1 are parallel in same direction |
|
f_d = tp.maxForce - f_v; |
|
} |
|
else if (alpha < 0.00001) { |
|
// special case 3b, F_v and F_p1 are parallel in opposite directions |
|
f_d = tp.maxForce + f_v; |
|
} |
|
else { |
|
double sin_alpha = Math.sin(alpha); |
|
f_d = tp.maxForce/sin_alpha * Math.sin(Math.PI - alpha - Math.asin(f_v/tp.maxForce*sin_alpha)); |
|
assert (f_d > 0 && f_d < 2*tp.maxForce) : f_d + " not in (0, " + (2*tp.maxForce) + ")"; |
|
} |
|
|
|
double t_1 = 2*tp.mass*dist_ttot / (t_tot*f_d); |
|
double t_2 = t_tot - t_1; |
|
if (t_2 < TIME_TOLERANCE) { |
|
// pick smaller f_v |
|
//LOG.debug(String.format("Iteration %2d: f_v_ratio %f; t_2 %,7.3f", nofIters, f_v_ratio, t_2)); |
|
max_f_v_ratio = f_v_ratio; |
|
f_v_ratio += (min_f_v_ratio - f_v_ratio) / 2; // (divisor experimentally calibrated) |
|
continue; |
|
} |
|
|
|
F_d.set(R_d).scale(f_d); |
|
F_d2.set(F_d).scale(-t_1/t_2); // since I_d = -I_d2 |
|
assert (F_d.copy().scale( t_1/tp.mass).differenceMagnitude(V_d_ttot) < GEOMETRIC_TOLERANCE) : F_d; |
|
assert (F_d2.copy().scale(-t_2/tp.mass).differenceMagnitude(V_d_ttot) < GEOMETRIC_TOLERANCE) : F_d2; |
|
|
|
SpatialVector F_1 = F_d.add(F_v); // NB: overwrites F_d instance |
|
SpatialVector F_2 = F_d2.add(F_v); // NB: overwrites F_d2 instance |
|
assert (Math.abs(F_1.length()-tp.maxForce)/tp.maxForce < FORCE_TOLERANCE) : "f1=" + F_1.length() + " != f=" + tp.maxForce; |
|
assert verifyF1F2(tp, t_1, t_2, F_1, F_2) : "F1=" + F_1 + "; F2=" + F_2; |
|
|
|
double f_2 = F_2.length(); |
|
if (f_2 > tp.maxForce) { |
|
// pick smaller f_v |
|
//LOG.debug(String.format("Iteration %2d: f_v_ratio %f; f_2 diff %e", nofIters, f_v_ratio, (tp.maxForce-f_2))); |
|
max_f_v_ratio = f_v_ratio; |
|
f_v_ratio += (min_f_v_ratio - f_v_ratio) / 1.25; // (divisor experimentally calibrated) |
|
} |
|
else { |
|
// best so far |
|
//LOG.debug(String.format("Iteration %2d: best so far f_v_ratio %f; f_2 diff %e; max_f_v_ratio %f", nofIters, f_v_ratio, (tp.maxForce-f_2), max_f_v_ratio)); |
|
best_f_v_ratio = f_v_ratio; |
|
trajectory[0].set(F_1, t_1); |
|
trajectory[1].set(F_2, t_2); |
|
if (f_2 < (tp.maxForce*(1-RESULT_FORCE_TOLERANCE))) { |
|
// pick greater f_v |
|
min_f_v_ratio = f_v_ratio; |
|
f_v_ratio += (max_f_v_ratio - f_v_ratio) / 4; // (divisor experimentally calibrated) |
|
} |
|
else { |
|
break; // done! |
|
} |
|
} |
|
} while (nofIters < ITER_LIMIT); |
|
|
|
if (best_f_v_ratio >= 0) { |
|
return trajectory; |
|
} |
|
else { |
|
LOG.warn(String.format("Couldn't determine full trajectory for %s (nofIters %d) best_f_v_ratio=%.12f", tp, nofIters, best_f_v_ratio)); |
|
trajectory = new TrajectoryLeg[1]; |
|
trajectory[0] = new TrajectoryLeg(tp.deltaVelocity, dV_magnitude*tp.mass/tp.maxForce); |
|
trajectory[0].thrust.add(tp.deltaPosition).normalize().scale(tp.maxForce); // set thrust direction to average of dP and dV |
|
return trajectory; |
|
} |
|
} |
|
|
|
private static boolean verifyF1F2(TrajectoryParameters tp, double t_1, double t_2, SpatialVector F_1, SpatialVector F_2) { |
|
final double REL_TOLERANCE = 1e-5; |
|
|
|
SpatialVector V_1 = F_1.copy().scale(t_1/tp.mass); |
|
SpatialVector V_2 = F_2.copy().scale(t_2/tp.mass); |
|
SpatialVector achievedDeltaVelocity = V_1.copy().add(V_2); |
|
double velDiff = achievedDeltaVelocity.differenceMagnitude(tp.deltaVelocity); |
|
assert (velDiff/tp.deltaVelocity.length() < REL_TOLERANCE) : velDiff/tp.deltaVelocity.length() + |
|
"; difference=" + velDiff + "; achievedDeltaVelocity=" + achievedDeltaVelocity + "; tp.deltaVelocity=" + tp.deltaVelocity; |
|
|
|
SpatialVector targetPosition = tp.deltaVelocity.copy().scale(t_1+t_2).add(tp.deltaPosition); |
|
SpatialVector achievedPosition = V_1.scale(t_1/2+t_2).add(V_2.scale(t_2/2)); |
|
double posDiff = achievedPosition.differenceMagnitude(targetPosition); |
|
assert (posDiff/tp.deltaPosition.length() < REL_TOLERANCE) : posDiff/tp.deltaPosition.length() + |
|
"; difference=" + posDiff + "; achievedPosition=" + achievedPosition + "; targetPosition=" + targetPosition; |
|
|
|
return true; |
|
} |
|
|
|
|
|
private static double calcSimpleRatio(TrajectoryParameters tp) { |
|
// compute the f_v ratio of the simplest trajectory where we accelerate in two steps: |
|
// 1) reduce the velocity difference with the destination to 0 (time needed: t_v) |
|
// 2) traverse the distance to arrive at the destination (time needed: t_p) |
|
// (This usually takes longer than the optimal trajectory, since the distance traversal |
|
// does not utilize the full travel time period. (The greater travel period that |
|
// the distance traversal can use, the less impulse (acceleration) it needs.)) |
|
|
|
double inv_acc = tp.mass / tp.maxForce; |
|
double t_v = inv_acc * tp.deltaVelocity.length(); |
|
|
|
SpatialVector newDeltaPos = tp.deltaVelocity.copy().scale(t_v/2).add(tp.deltaPosition); |
|
double distance = newDeltaPos.length(); |
|
double t_p = 2 * Math.sqrt(inv_acc * distance); |
|
|
|
double t_tot = t_v + t_p; |
|
double f_v_ratio = t_v / t_tot; |
|
return f_v_ratio; |
|
} |
|
|
|
|
|
|
|
/** Describes the starting conditions for a sought trajectory. |
|
* The members are:<BR> |
|
* deltaPosition<BR> |
|
* deltaVelocity<BR> |
|
* maxForce (ship's max thrust)<BR> |
|
* mass (ship's mass) |
|
*/ |
|
public static class TrajectoryParameters { |
|
public final SpatialVector deltaPosition; |
|
public final SpatialVector deltaVelocity; |
|
public final double maxForce; |
|
public final double mass; |
|
|
|
public TrajectoryParameters(SpatialTuple p0, SpatialTuple u, SpatialTuple q0, SpatialTuple v, double maxForce, double mass) { |
|
this(new SpatialVector(q0).sub(p0), new SpatialVector(v).sub(u), maxForce, mass); |
|
} |
|
|
|
public TrajectoryParameters(SpatialTuple deltaPosition, SpatialTuple deltaVelocity, double maxForce, double mass) { |
|
if (! deltaPosition.isFinite()) |
|
throw new IllegalArgumentException("deltaPosition is not finite: " + deltaPosition); |
|
if (! deltaVelocity.isFinite()) |
|
throw new IllegalArgumentException("deltaVelocity is not finite: " + deltaPosition); |
|
if (maxForce <= 0) |
|
throw new IllegalArgumentException("Force must be greater than zero (" + maxForce + ")"); |
|
this.deltaPosition = new SpatialVector(deltaPosition); |
|
this.deltaVelocity = new SpatialVector(deltaVelocity); |
|
this.maxForce = maxForce; |
|
this.mass = mass; |
|
} |
|
|
|
@Override |
|
public String toString() { |
|
return String.format("[%s: deltaP=%s deltaV=%s maxForce=%,.1f mass=%,.0f]", getClass().getSimpleName(), deltaPosition, deltaVelocity, maxForce, mass); |
|
} |
|
} |
|
|
|
|
|
|
|
/** Describes a computed trajectory leg. |
|
* The members are:<BR> |
|
* thrust vector (length of which is the thrust force; less than or equal to maxForce)<BR> |
|
* time (length of time to apply the thrust) |
|
*/ |
|
public static class TrajectoryLeg { |
|
public SpatialVector thrust; |
|
public double time; |
|
|
|
public TrajectoryLeg() { |
|
this.thrust = new SpatialVector(); |
|
this.time = 0; |
|
} |
|
public TrajectoryLeg(SpatialVector thrust, double time) { |
|
this.thrust = new SpatialVector(thrust); |
|
this.time = time; |
|
} |
|
|
|
public void set(SpatialVector thrust, double time) { |
|
this.thrust.set(thrust); |
|
this.time = time; |
|
} |
|
|
|
@Override |
|
public String toString() { |
|
return String.format("[%s: thrust=%s time=%,.1f]", getClass().getSimpleName(), thrust, time); |
|
} |
|
} |
|
} |